GATE - 2021

CS - (EVENING)

GENERAL APTITUDE

Q. 1 - Q. 5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: 1/3).

1. Gauri said that she can play the keyboard \qquad her sister.
(a) as well as
(b) as better as
(c) as nicest as
(d) as worse as

Ans. a
Exp:
(as - as) and (so - as) are used in positive degree of comparison only. Worse, better are comparative degree and nicest is superlative degree, which are not fit between as - as and so - as.
2. A transparent square sheet shown above is folded along the dotted line. The folded sheet will look like \qquad _.

(b)

(c)

(d)

Ans. b
3. If θ is the angle, in degrees, between the longest diagonal of the cube and any one of the edges of the cube, then, $\cos \theta=$
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{1}{\sqrt{2}}$
(d) $\frac{\sqrt{3}}{2}$

Ans. b
Exp:
Angle of longest diagonal of cube with an edge of cube.

TV THE GATE COACH

$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{1}{\sqrt{3}}$
4. If $\left(x-\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}=x+2$, then the value of x is :
(a) 2
(b) 4
(c) 6
(d) 8

Ans. b
Exp:
$\left(x-\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}=x+2$
Using $a^{2}-b^{2}=(a+b)(a-b)$
$\left(x-\frac{1}{2}+x-\frac{3}{2}\right)\left(x-\frac{1}{2}-x+\frac{3}{3}\right)=x+2$
$(2 x-2)=x+2$
$x=4$
5. Pen : Write : : Knife : \qquad
Which one of the following options maintains a similar logical relation in the above?
(a) Vegetables
(b) Sharp
(c) Cut
(d) Blunt

Ans. c
Exp:
As Pen is used to write and knife is used to cut.

Q. 6 - Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: $-2 / 3)$.

6. Listening to music during exercise improves exercise performance and reduces discomfort. Scientists researched whether listening to music while studying can help students learn better and the results were inconclusive. Students who needed external stimulation for studying fared worse while students who did not need any external stimulation benefited from music.

Which one of the following statements is the CORRECT inference of the above passage?
(a) Listening to music has no effect on learning and a positive effect on physical exercise.
(b) Listening to music has a clear positive effect both on physical exercise and on learning.
(c) Listening to music has a clear positive effect on physical exercise. Music has a positive effect on learning only in some students.
(d) Listening to music has a clear positive effect on learning in all students. Music has a positive effect only in some students who exercise.

Ans. c

Exp:

"Only in some students" is the key in option c and that matches well with the given informations in the passage.
7. A jigsaw puzzle has 2 pieces. One of the pieces is shown above. Which one of the given options for the missing piece when assembled will form a rectangle?

The piece can be moved, rotated or flipped to assemble with the above piece.

(a)

(b)

(c)

(d)

Ans. a
Exp:
8. The number of students in three classes is in the ratio 3:13:6. If 18 students are added to each class, the ratio changes to 15:35:21.

The total number of students in all the three classes in the beginning was:
(a) 22
(b) 66
(c) 88
(d) 110

Ans. c
Exp:
$3: 13: 6$

Let $\quad 3 k+13 k+6 k=n$
Now $+18+18+18$ $15: 35: 21$
$15 y+35 y+21 y=22 k+54$

$$
71 \mathrm{y}=22 \mathrm{k}+54
$$

Put value of k and satisfy
Here for, $\mathrm{k}=4$,
$\mathrm{n}=88$
9. The number of units of a product sold in three different years and the respective net profits are presented in the figure. The cost/unit in Year 3 was ` 1 , which was half the cost/unit in Year 2. The cost/unit in Year 3 was one-third of the cost/unit in Year 1. Taxes were paid on the selling price at $10 \%, 13 \%$ and 15% respectively for the three years. Net profit is calculated as the difference between the selling price and the sum of cost and taxes paid in that year.

The ratio of the selling price in Year 2 to the selling price in Year 3 is \qquad .
(a) $4: 3$
(b) $1: 1$
(c) $3: 4$
(d) $1: 2$

Ans. a
Exp:
Cost/unit in year $3=$ Rs. 1
Cost/unit in year $2=$ Rs. 2

TVT THE GATE COACH

Cost/unit in year $1=$ Rs. 3

Net profit $=$ S.P $-($ Cost + Taxes $)$
In year $2, \quad 296=$ S.P. $-(2 \times 200+0.13$ S.P. $)$
S.P. $=800$

Selling price in year $2=$ Rs. 800

In year 3, $\quad 210=$ S.P. $-(300 \times 1+0.15$ S.P. $)$
Selling price in year $3=$ Rs. 600
Hence, Required ratio $=800: 600=4: 3$
10. Six students P, Q, R, S, T and U, with distinct heights, compare their heights and make the following observations.

Observation I: S is taller than R .
Observation II: Q is the shortest of all.

Observation III: U is taller than only one student.
Observation IV: T is taller than S but is not the tallest.

The number of students that are taller than R is the same as the number of students shorter than
\qquad —.
(a) T
(b) R
(c) S
(d) P

Ans.

Exp:
$S>R$

Q is shortest and U is taller than only one.
$\mathrm{T}>\mathrm{S}$

Hence, possible order is : $\mathrm{P}>\mathrm{T}>\mathrm{S}>\mathrm{R}>\mathrm{U}>\mathrm{Q}$.
$\because \quad$ Number of students taller than $\mathrm{R}=3$
$\therefore \quad$ Number of students shorter than $S=3$.

Computer Science and Information Technology (CS, Set-2)

Q. 1 - Q. 10 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: 1/3).

1. Let G be a connected undirected weighted graph. Consider the following two statements.
S_{1} : There exists a minimum weight edge in G which is present in every minimum spanning tree of G.
S_{2} : If every edge in G has distinct weight, then G has a unique minimum spanning tree.
Which one of the following options is correct?
(a) Both S_{1} and S_{2} are true.
(b) S_{1} is true and S_{2} is false
(c) S_{1} is false and S_{2} is true
(d) Both S_{1} and S_{2} are false.

Ans. c
Exp:
(a)
S_{1} : Consider the graph :

One of the possible MSTS can be:

But the minimum weight edge BC in G is not present. So, the S_{1} is false statement.
$S_{2}:$ In any undirected graph G, distinct edge weights means Unique MST.

TV THE GATE COACH

So, S_{1} is false and S_{2} is true.
2. Let H be a binary min-heap consisting of n elements implemented as an array. What is the worst case time complexity of an optimal algorithm to find the maximum element in H ?
(a) $\Theta(1)$
(b) $\Theta(\log n)$
(c) $\Theta(n)$
(d) $\Theta(n \log n)$

Ans. c

Exp:

Maximum element is present somewhere in the leaf nodes.
$\therefore \quad$ Find max in all leaf nodes from $\left(\left[\frac{n}{2}\right]+1\right) \ldots \ldots . a[n]$
$\Rightarrow \quad$ Number of comparisons $=\frac{n}{2}-1=\Theta(n)$

3. Consider the following ANSI C program:

int main () \{

```
        integer x ;
```

 return 0;
 \}
Which one of the following phases in a seven-phase C compiler will throw an error?
(a) Lexical analyzer

TV THE GATE COACH

(b) Syntax analyzer
(c) Semantic analyzer
(d) Machine dependent optimizer

Ans. c
Exp:
int main () \{
integer x ;
return 0;
\}
In this code, there is no lexical error present. But there is a syntax error at the statement.
Integer x;
So, syntax analyzer will throw an error.
4. The format of the single-precision floating-point representation of a real number as per the IEEE 754 standard is as follows:

\author{

| sign | exponent | Mantissa |
| :--- | :--- | :--- | :--- |

}

Which one of the following choices is correct with respect to the smallest normalized positive number represented using the standard?
(a) exponent $=00000000$ and mantissa $=00000000000000000000000$
(b) exponent $=00000000$ and mantissa $=00000000000000000000001$
(c) exponent $=00000001$ and mantissa $=00000000000000000000000$
(d) exponent $=00000001$ and mantissa $=00000000000000000000001$

Ans. c
Exp:
$\left\{\begin{array}{l}\text { All } 0 \text { 's } B E \Rightarrow \text { Used for " } 0 " \\ \text { All } 1 \text { 's } B E \Rightarrow \text { Used for }(+\infty \text { and }-\infty)\end{array}\right\}$
5. Which one of the following circuits implements the Boolean function given below?
$f(x, y, z)=\mathrm{m}_{0}+\mathrm{m}_{1}+\mathrm{m}_{3}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{6}$, where m_{i} is the $\mathrm{i}^{\text {th }}$ minterm.

TVTHE GATE COACH

(a)

(b)

(c)

(d)

Ans. a
Exp:

TV THE GATE COACH

$\sum(x, \mathrm{y}, \mathrm{z})=\mathrm{m}_{\mathrm{o}}+\mathrm{m}_{1}+\mathrm{m}_{3}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{6}=\sum \mathrm{m}(0,1,3,4,5,6)$
As per the given options, variable y is connected to multiplexer select input S_{1} and z is connected to select input S_{o}.

		S_{1}	S_{0}		
			q.		
		y	z		
		I_{0}	I_{1}	I_{2}	I_{3}
		00	01	10	11
x	0	(0)	(1)	2	(3)
x	1	(4)	(5)	6	7
		1	1	x	\bar{x}

6. Consider the following statements S_{1} and S_{2} about the relational data model:
S_{1} : A relation scheme can have at most one foreign key.
S_{2} : A foreign key in a relation scheme R cannot be used to refer to tuples of R .
Which one of the following choices is correct ?
(a) Both S_{1} and S_{2} are true.
(b) S_{1} is true and S_{2} is true.
(c) S_{1} is false and S_{2} is true.
(d) Both S_{1} and S_{2} are false.

Ans. d

Exp:
S_{1} : A relation scheme can have at most one foreign key.

More than $1 \mathrm{f}_{\mathrm{k}}$ also possible.
S_{2} : A foreign key in a relation scheme R cannot be used to refer to tuples of R .

e.g. Self referential relationship.

So, both S_{1} and S_{2} are false.
7. Consider the three-way handshake mechanism followed during TCP connection establishment between hosts P and Q . Let X and Y be two random 32-bit starting sequence numbers chosen by P and Q respectively. Suppose P sends a TCP connection request message to Q with a TCP segment having SYN bit $=1$, SEQ number $=\mathrm{X}$, and ACK bit $=0$. Suppose Q accepts the connection request. Which one of the following choices represents the information present in the TCP segment header that is sent by Q to P ?
(a) SYN bit $=1$, SEQ number $=\mathrm{X}+1, \mathrm{ACK}$ bit $=0$, ACK number $=\mathrm{Y}$, FIN bit $=0$
(b) SYN bit $=0$, SEQ number $=\mathrm{X}+1$, ACK bit $=0$, ACK number $=\mathrm{Y}$, FIN bit $=1$
(c) SYN bit $=1$, SEQ number $=\mathrm{Y}$, ACK bit $=1$, ACK number $=\mathrm{X}+1$, FIN bit $=0$
(d) SYN bit $=1$, SEQ number $=\mathrm{Y}, \mathrm{ACK}$ bit $=1$, ACK number $=\mathrm{X}$, FIN bit $=0$

Ans. c
Exp:
Q will send the SYN bit $=1$ to the connection establishment.
Q seq number will be Y different from X.
ACK bit $=1$ because sending the ACK.
ACK number $=\mathrm{X}+1$ (Next seq number id)
FIN bit $=0$ (Because establishing the connection)
8. What is the worst-case number of arithmetic operations performed by recursive binary search on a sorted array of size n ?
(a) $\Theta(\sqrt{n})$
(b) $\Theta\left(\log _{2}(\mathrm{n})\right)$
(c) $\Theta\left(n^{2}\right)$

TV THE GATE COACH

(d) $\Theta(n)$

Ans. b
Exp:
Worst case is when the element not present in the sorted array.

n elements

$n / 2$
$n / 4$
$n / 2^{x}=1$
$K=\log _{2} n$

Worst case occurrence relation is

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{ll}
T\left(\frac{n}{2}\right)+1, & n>1 \\
1, & n \leq 1
\end{array}\right\} \\
& \therefore \quad \Theta\left(\log _{2}(\mathrm{n})\right)
\end{aligned}
$$

9. Let $\mathrm{L} \subseteq\{0,1\}^{*}$ be an arbitrary regular accepted by a minimal DFA with k states. Which one of the following languages must necessarily be accepted by a minimal DFA with k states?
(a) $\mathrm{L}-\{01\}$
(b) $\mathrm{L} \cup\{01\}$
(c) $\{0,1\}^{*}-\mathrm{L}$
(d) $\mathrm{L} \cdot \mathrm{L}$

Ans. c
Exp:
If L is accepted by a min DFA with k states, by exchanging final and non-final states, we can make a minimal DFA with k states which accepts $\{0,1\}^{*}-\mathrm{L}=\overline{\mathrm{L}}$.

TV THE GATE COACH

10. Consider the following ANSI C program.
\#include <stdio.h>
int main () \{
int arr[4][5];
int i, j;
for ($\mathrm{i}=0 ; \mathrm{i}<4 ; \mathrm{i}++$) $\{$
for $(\mathrm{j}=0 ; \mathrm{j}<5 ; \mathrm{j}++)\{$

$$
\operatorname{arr}[i][j]=10 * i+j ;
$$

\}
\}
printf ("\%d", *(arr[1] + 9));
return 0 ;
\}
What is the output of the above program?
(a) 14
(b) 20
(c) 24
(d) 30

Ans. c
Exp:

int a[4][5]
$[*(a+1)+9]$
It means skip one row and then skip 9 elements.
So, the resultant value is 24 .
Q. 11 - Q. 15 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).
11. Consider the following sets, where $\mathrm{n} \geq 2$.
S_{1} : Set of all $\mathrm{n} \times \mathrm{n}$ matrices with entries from the set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
S_{2} : Set of all functions from the set $\left\{0,1,2, \ldots, n^{2}-1\right\}$ to the set $\{0,1,2\}$
Which of the following choice(s) is/are correct?
(a) There does not exist a bijection from S_{1} to S_{2}.
(b) There exists a surjection from S_{1} to S_{2}.
(c) There exists a bijection from S_{1} to S_{2}.
(d) There does not exist an injection from S_{1} to S_{2}.

Ans. b, c
Exp:
$\left|S_{1}\right|=3^{n^{2}}$
Since each of the n^{2} entries in $\mathrm{n} \times \mathrm{n}$ matrix can be fills in 3 ways.

TVTHE GATE COACH

$\left|S_{2}\right|=3^{n^{2}}$
Since $|\{0,1,2\}|=3$ and $\left.\left|\left\{0,1,2, \ldots . n^{2}-1\right\}\right|=n^{2}\right)$
Now the theorem says A bijection $f_{A \rightarrow B}$ exists iff $|A|=|B|$.
Here, $\quad\left|S_{1}\right|=\left|S_{2}\right|$
So, there has to be a bijection from S_{1} to S_{2}. So, option b is correct.
If bijection exists surely surjection also exists. So, option c is correct.
12. Let L_{1} be a regular language and L_{2} be a context-free language. Which of the following languages is/are context-free?
(a) $\mathrm{L}_{1} \cap \overline{\mathrm{~L}_{2}}$
(b) $\overline{\overline{\mathrm{L}_{1}} \cup \overline{\mathrm{~L}_{2}}}$
(c) $\mathrm{L}_{1} \cup\left(\mathrm{~L}_{2} \cup \overline{\mathrm{~L}_{2}}\right)$
(d) $\left(\mathrm{L}_{1} \cap \mathrm{~L}_{2}\right) \cap\left(\overline{\mathrm{L}_{1}} \cap \mathrm{~L}_{2}\right)$

Ans. b, c, d
Exp:
$\mathrm{L}_{1} \rightarrow$ Regular
$\mathrm{L}_{2} \rightarrow \mathrm{CFL}$

1. $\mathrm{L}_{1} \cup \overline{\mathrm{~L}}_{2}=\operatorname{Reg} \cap \overline{\mathrm{CFL}}=\operatorname{Reg} \cap \overline{\mathrm{CSL}}$

$$
=\text { Reg } \cap \text { CSL }=\text { CSL } \quad(\text { need not be CFL) }
$$

2. $\overline{\overline{\mathrm{L}}_{1} \cup \overline{\mathrm{~L}}_{2}}=\mathrm{L}_{1} \cap \mathrm{~L}_{2}=\mathrm{Reg} \cap \mathrm{CFL}=\mathrm{CFL}$
3. $\mathrm{L}_{1} \cup\left(\mathrm{~L}_{2} \cup \overline{\mathrm{~L}}_{2}\right)=\mathrm{L}_{1} \cup \sum^{*}=\sum^{*}=$ Regular and hence CFL.
4. $\left(\mathrm{L}_{1} \cap \mathrm{~L}_{2}\right) \cup\left(\overline{\mathrm{L}}_{1} \cap \mathrm{~L}_{2}\right)=\left(\mathrm{L}_{1} \cup \overline{\mathrm{~L}}_{1}\right) \cap \mathrm{L}_{2}$

$$
\begin{aligned}
& =\sum^{*} \cap \mathrm{~L}_{2} \\
& =\mathrm{L}_{2}=\mathrm{CFL}
\end{aligned}
$$

13. In the context of compilers, which of the following is/are NOT an intermediate representation of the source program?
(a) Three address code
(b) Abstract Syntax Tree (AST)
(c) Control Flow Graph (CFG)
(d) Symbol table

Ans. d
Exp:
Symbol table is a data structure which is used for storing the information about variables. So, option d is correct.

There are three major categories of intermediate code representation.
Structural, linear and hybrid.
And CFG comes under the structural intermediate code representation.
14. Which of the following statement(s)/are correct in the context of CPU scheduling?
(a) Turnaround time includes waiting time.
(b) The goal is to only maximize CPU utilization and minimize throughput.
(c) Round-robin policy can be used even when the CPU time required by each of the processes is not known apriori.
(d) Implementing preemptive scheduling needs hardware support.

Ans. a, c, d

Exp:

- Goal is to maximize CPU utilization and maximize the throughput. So, statement (a) is false.
- Statement (b) is true, because turnaround time $=$ completion time - arrival time and waiting time is included in this.
- Statement (c) is true because using time quantum, we can run the processes even if burst time is not known initially in round-robin.
- True for example, round robin scheduling requires hardware support which is timer.

15. Choose the correct choice(s) regarding the following propositional logic assertion S :

$$
S:(\mathrm{P} \wedge \mathrm{Q}) \rightarrow \mathrm{R}) \rightarrow((\mathrm{P} \wedge \mathrm{Q}) \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})
$$

(a) S is neither a tautology nor a contradiction.

TV THE GATE COACH

(b) S is a tautology
(c) S is a contradiction
(d) The antecedent of S is logically equivalent to the consequent of S.

Ans. b, d

Exp:
$S:((\mathrm{P} \wedge \mathrm{Q}) \rightarrow \mathrm{R}) \rightarrow((\mathrm{P} \wedge \mathrm{Q}) \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})$
$\equiv(\mathrm{pq} \rightarrow \mathrm{r}) \rightarrow(\mathrm{pq} \rightarrow(\mathrm{q} \rightarrow \mathrm{r}))$
$\equiv\left[(\mathrm{pq})^{\prime}+\mathrm{r}\right] \rightarrow\left[(\mathrm{pq})^{\prime}+\left(\mathrm{q}^{\prime}+\mathrm{r}\right)\right]$
$\equiv\left[(\mathrm{pq})^{\prime}+\mathrm{r}\right]^{\prime}+\left[(\mathrm{pq})^{\prime}+\left(\mathrm{q}^{\prime}+\mathrm{r}\right)\right]$
$\equiv\left[p q \cdot r^{\prime}\right]+\left[p^{\prime}+q^{\prime}+q^{\prime}+r\right]$
$\equiv \mathrm{pqr} \mathrm{r}^{\prime}+\mathrm{p}^{\prime}+\mathrm{q}^{\prime}+\mathrm{r}$
$\equiv\left(p+p^{\prime}\right)\left(q r^{\prime}+p^{\prime}\right)+q^{\prime}+r$
$\equiv \mathrm{qr}^{\prime}+\mathrm{p}^{\prime}+\mathrm{q}^{\prime}+\mathrm{r}$
$\equiv\left(q^{\prime}+q^{\prime}\right)\left(r^{\prime}+q^{\prime}\right)+p^{\prime}+r$
$\equiv \mathrm{r}^{\prime}+\mathrm{q}^{\prime}+\mathrm{p}^{\prime}+\mathrm{r}$
$\equiv \mathrm{r}^{\prime}+\mathrm{r}+\mathrm{q}^{\prime}+\mathrm{p}^{\prime}$
$\equiv 1+\mathrm{q}^{\prime}+\mathrm{p}^{\prime}$
$\equiv 1$ (Tautology)
So, S is a tautology.
So, option (b) is correct.
Option (d) antecedent of S is
$\mathrm{pq} \rightarrow \mathrm{r} \equiv(\mathrm{pq})^{\prime}+\mathrm{r}$
$\equiv \mathrm{p}^{\prime}+\mathrm{q}^{\prime}+\mathrm{r}$
The consequent of S is $p q \rightarrow(q \rightarrow r)$
$\equiv(\mathrm{pq})^{\prime}+\mathrm{q}^{\prime}+\mathrm{r}$
$\equiv \mathrm{p}^{\prime}+\mathrm{q}^{\prime}+\mathrm{q}^{\prime}+\mathrm{r}$
$\equiv \mathrm{p}^{\prime}+\mathrm{q}^{\prime}+\mathrm{r}$

So, Antecedent of $S \equiv$ Consequent of S

TV THE GATE COACH

So, option d is also true.

Q. 16 - Q. 25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

16. Consider a complete binary tree with 7 nodes. Let A denote the set of first 3 element obtained by performing Breadth-First Search (BFS) starting from the root. Let B denote the set of first 3 elements obtained by performing Depth-First Search (DFS) starting from the root.

The value of $|A-B|$ is \qquad .

Ans. 1
Exp:

Using BFS, $\quad \mathrm{A}=\{1,2,3\}$
Using DFS, $\quad B=\{1,2,4\}$
$|\mathrm{A}-\mathrm{B}|=$ Number of elements which are in A but not in B is only element $\{3\}$.
So, only 1 element present.
17. Consider the following deterministic finite automaton (DFA).

The number of strings of length 8 accepted by the above automaton is \qquad _.

Ans. 256
Exp:
The regular expression for $L(M)$ is $0(0+1)(0+1)(0+1)^{*}+1(0+1)(0+1)(0+1)^{*}$
$=(0+1)(0+1)(0+1)(0+1)^{*}$

TVTHE GATE COACH

So, all strings of length \geq 3accepted.
Therefore, number of strings of length 8 is $2^{8}=256$.
18. If x and y are two decimal digits and $(0.1101)_{2}=(0.8 x y 5)_{10}$, the decimal value of $x=y$ is
\qquad .

Ans. 3

Exp:
$(0.1101)_{2}=1 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}=(0.8125)_{10}$
$(0.8125)_{10}=(0.8 x y 5)_{10}$
$\therefore \quad x=1, y=2, x+y=1+2=3$
19. Consider a set-associative cache of size 2 KB ($1 \mathrm{~KB}=2^{10}$ bytes) with cache block size of 64 bytes. Assume that the cache is byte-addressable and a 32-bit address is used for accessing the cache. If the width of the tag filed is 22 bits, the associativity of the cache is \qquad .

Ans. 2
Exp:
Set Associative Map
CM Site $=2 \mathrm{~KB}$
Block Size $=64 \mathrm{~B}$
Number of lines $=\frac{2^{11}}{2^{6}}=2^{5}=32$
MM Adder $=32$ bit
Tag filed size $=22$ bits
Set associative CM adder format

Set offset $\left(S_{o}\right)=4$ bit
$\therefore \quad$ Number of sets $(S)=2^{4}(16)$

Number of sets $(\mathrm{S})=\frac{N}{P-\text { way }}$
$16=\frac{32}{P-w a y}$
P -way $=2$
20. Consider a computer system with DMA support. The DMA module is transferring one 8 -bit character in one CPU cycle from a device to memory through cycle stealing at regular intervals. Consider a 2 MHz processor. If 0.5% processor cycles are used for DMA, the data transfer rate of the device is \qquad bits per second.

Ans. 80000
Exp:

$$
\begin{gathered}
y=0.5 \mu \mathrm{sec}(\text { Transfer Time }) \\
x=\text { Preparation time }
\end{gathered}
$$

$\%$ time CPU blocked $=\left(\frac{y}{x+y}\right) \times 100$
$0.5=\left(\frac{0.5 \mu \mathrm{sec}}{x+0.5 \mu \mathrm{sec}}\right) \times 100$
$0.005 x+0.0025=0.5$
$x=99.5 \mu \mathrm{sec}$
($99.5 \mu \mathrm{sec}+0.5 \mu \mathrm{sec}$) Total time \qquad 8 bit

$$
=\frac{8 b i t}{100 \mu \mathrm{sec}}=80000 \text { bits per second }
$$?

21. A data file consisting of $1,50,000$ student-records is stored on a hard disk with block size of 4096 bytes. The data file is sorted on the primary key RollNo. The size of a record pointer for this disk is 7 bytes. Each student-record has a candidate key attribute called ANum of size 12 bytes. Suppose an index file with records consisting of two fields, ANum value and the record pointer to the corresponding student record, is built and stored on the same disk. Assume that the records of data file and index file are not split across disk blocks. The number of blocks in the index file is \qquad .

Ans. 698
Exp:

TV THE GATE COACH

Index entries $=$ Number of DB file record ($\because \quad$ Dense index)

Block factor for index,
$(\text { Block factor })_{\text {index }}=\left\lfloor\frac{4096}{19}\right\rfloor$ entries $/$ block $=215$
$\therefore \quad$ Number of index blocks $=\left\lceil\frac{1,50,000}{215}\right\rceil$ blocks $=698$ index blocks
22. For a given biased coin, the probability that the outcome of a toss is a head is 0.4 . This coin is tossed 1,000 times. Let X denote the random variable whose value is the number of times that head appeared in these 1,000 tosses. The standard deviation of X (rounded to 2 decimal places) is \qquad .

Ans. $15.00-16.00$
Exp:
$\mathrm{n}=1000, \mathrm{p}=0.4, \mathrm{q}=0.6$
It is binomially distributed random variable.
So, \quad S.D. $=\sqrt{n p q}=\sqrt{1000 \times 0.4 \times 0.6}=15.49$
23. Consider the following ANSI C function: int SomeFunction(int x, int y)
\{
if $((x==1) \|(y==1))$ return 1 ;
if ($\mathrm{x}==\mathrm{y}$) return x ;
if $(x>y)$ return SomeFunction($x-y, y$);
if $(\mathrm{y}>\mathrm{x})$ return SomeFunction $(\mathrm{x}, \mathrm{y}-\mathrm{x})$;
\}
The value returned by $\operatorname{SomeFunction}(15,255)$ is \qquad .

Ans. 15
Exp:
This function will keep on subtracting till both x and y becomes equal that is 15 .

TV THE GATE COACH

24. Suppose that P is a 4×5 matrix such that every solution of the equation $\mathrm{Px}=0$ is a scalar multiple of $\left[\begin{array}{lllll}2 & 5 & 4 & 3 & 1\end{array}\right]^{\mathrm{T}}$. The rank of P is \qquad .

Ans. 4

Exp:
$\mathrm{P}_{4 \times 5} \Rightarrow$ Number of unknowns $(\mathrm{n})=5$ in $\mathrm{PX}=0$
Also it is given that Nullity $\mathrm{PX}=0$ is one, i.e., $\mathrm{N}(\mathrm{P})=1$.
Hence, Nullity = Number of unknowns - Rank
$1=5-\rho(P)$
or $\quad \rho(\mathrm{P})=5-1=4$
25. Suppose that $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on the interval $[-3,3]$ and a differential function in the interval $-3,3$) such that for every x in the interval, $f^{\prime}(x) \leq 2$. If $f(-3)=7$, then $f(3)$ is at most
\qquad .

Ans. 19

Exp:
$\mathrm{f}^{\prime}(\mathrm{x}) \leq 2, \mathrm{f}(-3)=7$
$f^{\prime}(x)=\frac{f(3)-7}{3-(-3)}$
$f^{\prime}(x)=\frac{f(3)-7}{6}$
$f(3)=6 f^{\prime}(x)+7$
Given max value of $\mathrm{f}^{\prime}(\mathrm{x})$ is 2 .
So, $\quad f(3)=6 \times 2+7=19$
Q. 26 - Q. 39 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: -2/3).
26. Consider the string abbccddeee. Each letter in the string must be assigned a binary code satisfying the following properties:

1. For any two letters, the code assigned to one letter must not be a prefix of the code assigned to the other letter.

TV THE GATE COACH

2. For any two letters of the same frequency, the letter which occurs earlier in the dictionary order is assigned a code whose length is at most the length of the code assigned to the other letter.

Among the set of all binary code assignments which satisfy the above two properties, what is the minimum length of the encoded string?
(a) 21
(b) 23
(c) 25
(d) 30

Ans. b
Exp:

Letters used in string:	a	b	c	d	E
Frequencies	1	2	2	2	3

Letters used in string:
$\therefore \quad$ Minimum length of encoded string
= Sum frequency count using Huffman coding
$=1 * 3+2 * 3+2 * 2+2 * 2+3 * 2=23$
Q. 27 Assume a two-level inclusive cache hierarchy, L1 and L2, where L2 is the larger of the two. Consider the following statements.
S_{1} : Read misses in a write through L1 cache do not result in writebacks of dirty lines to the L2.
S_{2} : Write allocate policy must be used in conjunction with write through caches and no-write allocate policy is used with writeback caches.

Which of the following statements is correct?
(a) S_{1} is true and S_{2} is false

TVTHE GATE COACH

(b) S_{1} is false and S_{2} is true
(c) S_{1} is true and S_{2} is true
(d) S_{1} is false and S_{2} is false

Ans. a

Exp:
28. Suppose we want to design a synchronous circuit that processes a string of 0 's and 1 's. Given a string, it produces another string by replacing the first 1 in any subsequence of consecutive 1 's by a 0 . Consider the following example.

Input sequence : 00100011000011100
Output Sequence: 00000001000001100
A Mealy Machine is a state machine where both the next state and the output are functions of the present state and the current input.

The above mentioned circuit can be designed as a two-state Mealy machine. The states in the Mealy machine can be represented using Boolean values 0 and 1 . We denote the current state, the next state, the next incoming bit, and the output bit of the Mealy machine by the variables s, t, b and y respectively.

Assume the initial state of the Mealy machine is 0 .
What are the Boolean expressions corresponding to t and y in terms of s and b ?
(a) $t=s+b$

$$
y=s b
$$

(b) $t=b$

$$
y=s b
$$

(c) $t=b$

$$
y=s \bar{b}
$$

(d) $t=s+b$
$y=s \bar{b}$
Ans. b

Exp:

PS	Next State t, $\mathrm{b}=0$	$\mathrm{O} / \mathrm{P} \mathrm{y}$, $\mathrm{b}=1$
0	0,0	1,0
1	0,0	1,1

$\mathrm{t}=\overline{\mathrm{s}} \mathrm{b}+\mathrm{sb}=\mathrm{b}$
$y=s b$
29. In an examination, a student can choose the order in which two questions (QuesA and QuesB) must be attempted.

- If the first question is answered wrong, the student gets zero marks.
- If the first question is answered correctly and the second question is not answered correctly, the student gets the marks only for the first question.
- If both the questions are answered correctly, the student gets the sum of the marks of the two questions.

The following table shows the probability of correctly answering a question and the marks of the question respectively.

Question	Probability of answering correctly	Marks
QuesA	0.8	10
QuesB	0.5	20

Assuming that the student always wants to maximize her expected marks in the examination, in which order should she attempt the questions and what is the expected marks for that order (assume that the questions are independent)?
(a) First QuesA and then QuesB. Expected marks 14.
(b) First QuesB and then QuesA. Expected marks 14.
(c) First QuesB and then QuesA. Expected marks 22.
(d) First QuesA and then QuesB. Expected marks 16.

Ans. d

Exp:

TV THE GATE COACH

Case 1: Assume A is correct and attempted as the first question.
(i) $\mathrm{P}(\mathrm{B}$ is correct $)=0.5$

Expected marks $=0.5 \times 20=10$
(ii) $\mathrm{P}(\mathrm{B}$ is wrong $)=0.5$

Expected marks $=0.5 \times 0=0$
Total expected marks $=(\mathrm{A}$ is correct, B is wrong $)$ or $(\mathrm{A}$ is correct, B is correct $)$
Total expected marks $=\frac{(0.8 \times 10+0.5 \times 0)+(0.8 \times 10+0.5 \times 20)}{2}=13$
Case 2: Assume B is correct and attempted as the first question.
Total expected marks $=(\mathrm{B}$ is correct, A is wrong $)$ or $(\mathrm{B}$ is correct, A is correct $)$
Total expected marks $=\frac{(0.5 \times 20+0.8 \times 0)+(0.8 \times 10+0.5 \times 20)}{2}=14$
30. Consider the following ANSI C code segment:

$$
\begin{aligned}
& z=x+3+y->f 1+y->f 2 ; \\
& \text { for }(i=0 ; i<200 ; i=i+2)\{ \\
& \text { if }(z>i)\{ \\
& p=q+x+3 ; \\
& q=q+y->f 1
\end{aligned}
$$

\} else \{
$\mathrm{p}=\mathrm{p}+\mathrm{y}->\mathrm{f} 2 ;$
$\mathrm{q}=\mathrm{q}+\mathrm{x}+3 ;$
\}
\}
Assume that the variable y points to a struct (allocated on the heap) containing two fields f 1 and f 2 , and the local variables $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}, \mathrm{q}$, and i are allotted registers. Common sub-expression elimination (CSE) optimization is applied on the code. The number of addition and dereference operations (of the form $y->f 1$ or $y->f 2$) in the optimized code, respectively, are:
(a) 403 and 102
(b) 203 and 2

TV THE GATE COACH

(c) 303 and 102
(d) 303 and 2

Ans. d
Exp:
$\mathrm{t}_{1}=\mathrm{y} \rightarrow \mathrm{f}_{1}$ (1 dereference)
$\mathrm{t}_{2}=\mathrm{y} \rightarrow \mathrm{f}_{2}$ (1 dereference)
$\mathrm{t}_{3}=x+3(1 \mathrm{add})$
$\mathrm{z}=\mathrm{t}_{3}+\mathrm{t}_{1}+\mathrm{t}_{2}$ (2 additions)
For $(i=0 ; i<200 ; i+=2)$
\{
if $(\mathrm{z}>1)$
\{

$$
\begin{aligned}
& \mathrm{p}=\mathrm{p}+\mathrm{t}_{3} \\
& \mathrm{q}=\mathrm{q}+\mathrm{t}_{1}(2 \text { add })
\end{aligned}
$$

\}
else
$\{$

$$
\begin{aligned}
& \mathrm{p}=\mathrm{p}+\mathrm{p}_{2} \\
& \mathrm{q}=\mathrm{q}+\mathrm{t}_{3}(2 \mathrm{add})
\end{aligned}
$$

\}
\}
If else condition \Rightarrow
Either it is executed (or) else is executed.
$\Rightarrow \quad$ At any iteration 2 addition operations will be executed.

So, in loop the iterations are $\left(\frac{200}{2}\right)=100$ times
$\therefore \quad$ In loop the number of addition $=100 \times 2=200$ additions
$\therefore \quad$ Total additions $=200+1+2+100$ loop additions (inside for loop) $=303$ and 2 dereferences.
$\therefore \quad$ Correct answer is 303 and 2
31. The relation scheme given below is used to store information about the employees of a company, where emId is the key and deptId indicates the department to which the employee is assigned. Each employee is assigned to exactly one department.

$$
\text { emp(empId, name, gender, salary, deptId })
$$

consider the following SQL query:
select deptId, count $\left({ }^{*}\right)$
from emp
where gender $=$ "female" and salary $>$ (select avg(salary) from emp) group by deptId;
The above query gives, for each department in the company, the number of female employees whose salary is greater than the average salary of
(a) employees in the department
(b) employees in the company
(c) female employees in the department
(d) female employees in the company

Ans. b

Exp:

emp	empId	Name	Gender	Salary	deptid
$21 \mathrm{~K}>20 \mathrm{~K}$	e_{1}	X	Female	210 K	CS
	e_{2}	Y	Male	19 K	CS
$25 \mathrm{~K}>20 \mathrm{~K}$	e_{3}	XZ	Female	25 K	EC
	e_{4}	YZ	Male	14 K	EC
$21 \mathrm{~K}>20 \mathrm{~K}$	e_{5}	a	Female	21 K	CS

Average salary of all employees in the company.
O/P

deptid	$\operatorname{count}\left({ }^{*}\right)$
CS	2
EC	1

For each department, number of female employees whose salary is greater than average salary of employees in the company.
32. Let S be the following schedule of operations of three transactions T_{1}, T_{2} and T_{3} in a relational database system:

TV THE GATE COACH

$$
\mathrm{R}_{2}(\mathrm{Y}), \mathrm{R}_{1}(\mathrm{X}), \mathrm{R}_{3}(\mathrm{Z}), \mathrm{R}_{1}(\mathrm{Y}), \mathrm{W}_{1}(\mathrm{X}), \mathrm{R}_{2}(\mathrm{Z}), \mathrm{W}_{2}(\mathrm{Y}), \mathrm{R}_{3}(\mathrm{X}), \mathrm{W}_{3}(\mathrm{Z})
$$

Consider the statements P and Q below:
$\mathrm{P}: \mathrm{S}$ is conflict-serializable.
Q : If T_{3} commits before T_{1} finishes, then S is recoverable.

Which one of the following choices is correct?
(a) Both P and Q are true.
(b) P is true and Q is false
(c) P is false and Q is true
(d) Both P and Q are false.

Ans. b

Exp:
No cycle is precedence graph.
$\therefore \quad$ Conflict serializable.

T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
\vdots	\vdots	\vdots
$\mathrm{~W}_{1}(\mathrm{X})$		
	$\mathrm{R}_{2}(\mathrm{Z})$	
	$\mathrm{W}_{2}(\mathrm{Y})$	
		$\mathrm{R}_{3}(\mathrm{X})$
		$\mathrm{W}_{3}(\mathrm{Z})$

T_{2} is doing dirty read of updated X by T_{1}.
So, recoverability only possible if T_{3} commits after commit/RB of T_{1}.
33. A bag has r red balls and b black balls. All balls are identical except for their colours. In a trial, a ball is randomly drawn from the bag, its colour is noted and the ball is placed back into the bag will increase by one, after the trial. A sequence of four such trials is conducted. Which one of the following choices gives the probability of drawing a red ball in the fourth trial?
(a) $\frac{r}{r+b}$
(b) $\frac{r}{r+b+3}$
(c) $\frac{r+3}{r+b+3}$
(d) $\left(\frac{r}{r+b}\right)\left(\frac{r+1}{r+b+1}\right)\left(\frac{r+2}{r+b+2}\right)\left(\frac{r+3}{r+b+3}\right)$

Ans. a
Exp:
There are 10 favourable ways to calculate the probability of red ball in $4^{\text {th }}$ trial.
$(\mathrm{RFR}) \mathrm{R}=\mathrm{R}$ or $(\mathrm{BRR}) \mathrm{R}=1$ way or $(\mathrm{RRR}) \mathrm{R}=3$ ways or $(\mathrm{BBR}) \mathrm{R}=3$ ways
$\mathrm{P}(\mathrm{RRRR})=\frac{r}{r+b} \times \frac{r+1}{r+1+b} \times \frac{r+2}{r+2+b} \times \frac{r+3}{r+3+b}$
$\mathrm{P}(\mathrm{BBBR})=\frac{b}{r+b} \times \frac{b+1}{r+b+1} \times \frac{b+2}{r+b+2} \times \frac{r}{r+b+3}$
$\mathrm{P}(\mathrm{RRBR})=\frac{3!}{2!} \times \frac{r}{r+b} \times \frac{r+1}{r+b+1} \times \frac{b}{r+b+2} \times \frac{r+2}{r+b+3}$
$\mathrm{P}(\mathrm{BBRR})=\frac{3!}{2!} \times \frac{b}{r+b} \times \frac{b+1}{r+b+1} \times \frac{r}{r+b+2} \times \frac{r+1}{r+b+3}$
Required probability $=(1)+(2)+(3)+(4)$
$=\frac{r(r+1)(r+2)(r+3)+b(b+1)(b+2) r+3 r(r+1) b(r+2)+3 b(b+1) r(r+1)}{(r+b)(r+b+1)(r+b+2)(r+b+3)}$
On simplify the above equation, we get
Required probability $=\frac{r(r+1+b)}{(r+b)(r+b+1)}=\frac{r}{r+b}$
34. Consider the cyclic redundancy check (CRC) based error detecting scheme having the generator polynomial $X^{3}+X+1$. Suppose the message $m_{4} m_{3} m_{2} m_{1} m_{0}=11000$ is to be transmitted. Check bits $\mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$ are appended at the end of the message by the transmitter using the above CRC scheme. The transmitted bit string is denoted by $m_{4} m_{3} m_{2} m_{1} m_{0} c_{2} c_{1} c_{0}$. The value of the checkbit sequence $c_{2} c_{1} c_{0}$ is
(a) 101
(b) 110
(c) 100
(d) 111

Ans. c
Exp:
$x^{3}+x+1=1011$
$1011 \overline{11000000}$

35. Consider the following ANSI C program:

\#include <stdio.h>
\#include <stdlib.h>
struct Node \{
int value;
struct Node *next; \};
int main () \{
struct Node *boxE, *head, *boxN; int index $=0$;
boxE $=$ head $=($ struct Node $*)$ malloc(sizeof(struct Node) $)$;
head->value $=$ index;
for $($ index $=1 ;$ index $<=3$; index ++) $\{$
boxN $=($ struct Node $*)$ malloc(sizeof(struct Node) $)$;
boxE-> next $=$ boxN;
boxN-> value = index;
boxE $=$ boxN; \}
for (index $=0$; index $<=3$; index ++) $\{$
printf("Value at index \%d is \%dln", index, head->value);
head $=$ head-> next;
printf("Value at index \%d is \%dln", index+1, head->value); \} \}
Which one of the statements below is correct about the program?
(a) Upon execution, the program creates a linked-list of five nodes.
(b) Upon execution, the program goes into an infinite loop.
(c) It has a missing return which will be reported as an error by the compiler.
(d) It dereferences an uninitialized pointer that may result in a run-time error.

Ans. d
Exp:
As we can see in the loop, i runs from 1 to 3 . So, four nodes will be created because one node is already created with value 0 .

When index $=3$, then head value $=3$

$$
\text { Head }=\text { Head } \rightarrow \text { Next (Now head will point to NULL) }
$$

Head \rightarrow Value [which is in print. So, it will generate Run time Error].
36. Consider the following two statements about regular languages:
S_{1} : Every infinite regular language contains an undecidable language as a subset.
S_{2} : Every finite language is regular.
Which one of the following choices is correct?
(a) Only S_{1} is true
(b) Only S_{2} is true
(c) Both S_{1} and S_{2} are true
(d) Neither S_{1} nor S_{2} is true.

Ans. c
Exp:
S_{1} : Every infinite regular language contains an undecidable language as a subset.
S_{2} : Every finite language is regular.
Clearly, S_{2} is true, since for finite language, we can design FA by brute force, with a finite number of states.

Since, any language can be subset of an infinite language (No infinite language is closed under subset operation).

So, an infinite regular language can have any type of language as a subset including undecidable (nonREC) languages.

So, S_{1} is also true. So, both S_{1} and S_{2} are true.

TVTHE GATE COACH

37. For two n-dimensional real vectors P and Q , the operation $s(P, Q)$ is defined as follows:

$$
s(P, Q)=\sum_{i=1}^{n}(P[i] \cdot Q[i])
$$

Let \mathcal{L} be a set of 10 -dimensional non-zero real vectors such that for every pair of distinct vectors P, Q $\epsilon \mathcal{L}, \mathrm{s}(\mathrm{P}, \mathrm{Q})=0$. What is the maximum cardinality possible for the set \mathcal{L} ?
(a) 9
(b) 10
(c) 11
(d) 100

Ans. b
Exp:
\mathcal{L} is the set of 10 -dimensional orthogonal vectors. So, cardinality of $\mathcal{L} \leq 10$.
i.e., Maximum cardinality of $\mathcal{L}=10$.
38. For a statement S in program, in the context of liveness analysis, the following sets are defined:

USE(S) : the set of variables used in S
$\operatorname{IN}(S) \quad: \quad$ the set of variable that are live at the entry of S
OUT(S) : the set of variables that are live at the exit of S
Consider a basic block that consists of two statements, S_{1} followed by S_{2}. Which one of the following statements is correct?
(a) $\operatorname{OUT}\left(\mathrm{S}_{1}\right)=\operatorname{IN}\left(\mathrm{S}_{2}\right)$
(b) Out $\left(\mathrm{S}_{1}\right)=\operatorname{IN}\left(\mathrm{S}_{1}\right) \cup \operatorname{USE}\left(\mathrm{S}_{1}\right)$
(c) OUT $\left(\mathrm{S}_{1}\right)=\operatorname{IN}\left(\mathrm{S}_{2}\right) \cup$ OUT $\left(\mathrm{S}_{2}\right)$
(d) OUT $\left(\mathrm{S}_{1}\right)=\operatorname{USE}\left(\mathrm{S}_{1}\right) \cup \operatorname{IN}\left(\mathrm{S}_{2}\right)$

Ans. a
Exp:
In live variable analysis at any node, the set of variables live at just after the block are evaluated using the formula.

OUT $=\cup \operatorname{IN}$ (Successor nodes)

TVTHE GATE COACH

So, the correct option is
$\operatorname{OUT}\left(\mathrm{S}_{1}\right)=\mathrm{IN}\left(\mathrm{S}_{2}\right)$
39. For constants $\mathrm{a} \geq 1$ and $\mathrm{b}>1$, consider the following recurrence defined on the non-negative integers:

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)
$$

Which one of the following options is correct about the recurrence $T(n)$?
(a) If $f(\mathrm{n})$ is $n \log _{2}(\mathrm{n})$, then $T(\mathrm{n})$ is $\Theta\left(\mathrm{n} \log _{2}(\mathrm{n})\right)$.
(b) If $f(\mathrm{n})$ is $\frac{n}{\log _{2}(n)}$, then $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\log _{2}(\mathrm{n})\right)$.
(c) If $f(\mathrm{n})$ is $\mathrm{O}\left(n^{\log _{b}(a)-\epsilon}\right)$ for some $\epsilon>0$, then $\mathrm{T}(\mathrm{n})$ is $\Theta\left(n^{\log _{b}(a)}\right)$.
(d) If $f(\mathrm{n})$ is $\Theta\left(n^{\log _{b}(a)}\right)$, then $\mathrm{T}(\mathrm{n})$ is $\Theta\left(n^{\log _{b}(a)}\right)$.

Ans. c
Exp:
Option c is true according to Standard Master Theorem.
Q. 40 - Q. 47 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).
40. Suppose the following functional dependencies hold on a relation U with attributes P, Q, R, S, and T:

$$
\begin{aligned}
& \mathrm{P} \rightarrow \mathrm{QR} \\
& \mathrm{RS} \rightarrow \mathrm{~T}
\end{aligned}
$$

Which of the following functional dependencies can be inferred from the above functional dependencies?
(a) PS $\rightarrow \mathrm{T}$
(b) $\mathrm{R} \rightarrow \mathrm{T}$
(c) $\mathrm{P} \rightarrow \mathrm{R}$
(d) $\mathrm{PS} \rightarrow \mathrm{Q}$

TV THE GATE COACH

Ans. a, c, d
Exp:

1. $\quad \mathrm{PS} \rightarrow \mathrm{T}$

$$
(\mathrm{PS})^{+}=\{\mathrm{P}, \mathrm{~S}, \mathrm{Q}, \mathrm{R}, \mathrm{~T}\}
$$

2. $\quad \mathrm{R} \rightarrow \mathrm{T}$
$(\mathrm{R})^{+}=\{\mathrm{R}\}$
3. $\quad \mathrm{P} \rightarrow \mathrm{R}$
$(\mathrm{P})^{+}=\{\mathrm{P}, \mathrm{Q}, \mathrm{R}\}$
4. $\quad \mathrm{PS} \rightarrow \mathrm{Q}$
$(\mathrm{PS})^{+}=\{\mathrm{P}, \mathrm{S}, \mathrm{Q}, \mathrm{R}, \mathrm{T}\}$
5. For a string w, we define w^{R} to be reverse of w. For example, if $w=01101$ then $w^{R}=10110$. Which of the following languages is/are context-free?
(a) $\left.\left\{w x w^{\mathrm{R}} x^{\mathrm{R}} \mid\right\} w, x \in\{0,1\}^{*}\right\}$
(b) $\left.\left\{w w^{\mathrm{R}} x x^{\mathrm{R}} \mid\right\} w, x \in\{0,1\}^{*}\right\}$
(c) $\left\{w x w^{\mathrm{R}} \mid w, x \in\{0,1\}^{*}\right\}$
(d) $\left.\left\{w x x^{R} w^{R}\right\} w, x \in\{0,1\}^{*}\right\}$

Ans. b, c, d
Exp:
Option (a) :
By putting w as " ϵ " we will get $\left\{x x^{R} \mid x \in\{0,1\}^{*}\right\}$ which still has string matching. So, this will not be regular. Similarly, by putting x as \in it will be $\left\{w w^{\mathrm{R}} \mid w \in\{0,1\}^{*}\right\}$ which still has string matching and will not become regular.

So, we need to do string matching but alternate order string matching is not possible in PDA. So, it is a CSL. Option a is a CSL but not CFL.

Option (b):
Here by putting x or w as ϵ, we cannot remove string matching. So, it is not regular. But it is CFL since in a NPDA we can push w , pop for w^{R} match it and then push x and pop for x^{R} and match it again and so this language is a CFL.

Option (c):
By putting w as " ϵ " we will get $\left\{x \mid x \in\{0,1\}^{*}\right\}=(0+1)^{*}$
Since a subset of L is $(0+1)^{*}$, L itself must be $(0+1)^{*}$ which is regular and hence CLF. Option (b) is a CFL.

Option (d):

Here, also by putting w or x as ϵ, we cannot make it regular. NPDA can do this, push both w and x and then x^{R} pop and w^{R} pop and match. By push, push, pop, pop this can be accepted by NPDA. So, option d is CFL.
42. Consider the following multi-threaded code segment (in a mix of C and pseudo-code), invoked by two processes P1 and P2, and each of the processes spawns two threads T1 and T2 :
int $\mathrm{x}=0$; $\quad / /$ global
Lock L1; // global
main() \{

Which of the following statement(s) is/are correct?
(a) Both P 1 and P 2 will print the value of x as 2 .
(b) At least one of P1 and P2 will print the value of x as 4 .
(c) At least one of the threads will print the value of y as 2 .
(d) Both T 1 and T 2 , in both the processes, will print the value of y as 1 .

Ans. a, d
Exp:
P_{1} and P_{2} can spawn two threads T_{1} and T_{2}.
int $x=0$; //global
Lock Li; //global

TVTHE GATE COACH

```
main() {
    foo( );//Thread T T
    foo( ); //Thread T2
    print(x);
}
foo() {
a. int y = 0;
b. Acquire L L :
c. }x=x+1
d. y=y+1;
    release Li;
    print(y);
}
```

- Let P_{1} executed T_{1} and in foo().

(a) $\mathrm{P}_{1}-\mathrm{T}_{1}$
(b) $\mathrm{P}_{1}-\mathrm{T}_{1}$
(d) $x=x+1\left(\mathrm{P}_{1}-\mathrm{T}_{1}\right)$
.... Preempt T_{1} of P_{1}.
Similarly, perform thread T_{2} of P_{1} then $x=2$.
Now, if we similarly perform both threads of P_{2} then x will be maximum 4 .
- x can be 2 also.

Note: But as we know every foo call will have its own copy of variable y so y cannot be more than 1 in any case.
43. Consider a computer system with multiple shared resource types, with one instance per resource type. Each instance can be owned by only one process at a time. Owning and freeing of resources are done by holding a global lock (L). The following scheme is used to own a resource instance :

function OWNRESOURCE(Resource R)

Acquire lock L // a global lock
if R is available then
Acquire R
Release lock L
else
if R is owned by another process P then
Terminate P , after releasing all resources owned by P
Acquire R

Restart P

Release lock L

end if
 end if
 end function

Which of the following choice(s) about the above scheme is/are correct?
(a) The scheme ensures that deadlocks will not occur.
(b) The scheme may lead to live-lock
(c) The scheme may lead to starvation
(d) The scheme violates the mutual exclusion property.

Ans. a, b, c
Exp:

- Mutual exclusion is not violated.
- Also, there will be no deadlock because of forceful pre-emption of resources.
- This may lead to starvation if the process is keeps on coming and pre-empting each other like P_{1} is pre-empted by P_{2} and P_{2} is pre-empted by P_{3}.
- Live-lock is also possible due to continuous pre-emption of resources.

For option (b) consider two processes P_{1} and P_{2} now P_{1} enter the code acquires lock and resource.
Now P_{2} enters the else part kills P_{1} and acquire R and restart P_{1}.
Now P_{1} again acquire lock and kills the process P_{2} this continues creating a live lock scenario but there is ambiguity in the code since "Release R " is not written anywhere so ambiguity is regarding how the process will release Resource R. According to the code, the only way to release the resource is by getting killed.
44. If the numerical value of a 2-byte unsigned integer on a little endian computer is 225 more than that on a big endian computer, which of the following choices represent(s) the unsigned integer on a little endian computer?
(a) 0×6665
(b) 0×0001
(c) 0×4243
(d) 0×0100

Ans. a, d
Exp:
Option (a): In little endian 0x6665 on converting it to decimal $=26213$
In big endian it will be 6566 on converting it to decimal $=25958$
Now little endian - big endian $=26231-25958=255$ which is correct.
Option (b): In little endian 0x0001 which is 1 in decimal in big endian 0×0100 which is greater than little endian in decimal. So, this is incorrect option.

Option (c): Little endian $=0 \times 4243$ and big endian $=0 \times 4342$, big endian value is greater than little endian so this is incorrect.

Option (d): Little endian $=0 \times 0100$ which is 256 in decimal and big endian $=0 \times 0001$ which is 1 in decimal and difference will be 255 hence this is also correct option.
45. Consider a computer network using the distance vector routing algorithm in its network layer. The partial topology of the network is as shown below.

The objective is to find the shortest-cost path from the router R to routers P and Q . Assume that R does not initially know the shortest routes to P and Q . Assume that R has three neighbouring routers denoted as X, Y and Z. During one iteration, R measures its distance to its neighbours X, Y, and Z as 3 , 2, and 5 , respectively. Router R gets routing vectors from its neighbours that indicate that the distance to router P from routers X, Y and Z are 7,6 , and 5 , respectively. The routing vector also indicates that the distance to router Q from routers X, Y, and Z are 4,6 , and 8 , respectively. Which of

TV THE GATE COACH

the following statement(s) is/are correct with respect to the new routing table of R , after updation during this iteration?
(a) The distance from R to P will be stored as 10 .
(b) The distance from R to Q will be stored as 7 .
(c) The next hop router for a packet from R to P is Y .
(d) The next hop router for a packet from R to Q is Z .

Ans. b, c
Exp:
Given R gets the distance vector $(3,2,5)$
After the one iteration distance vector from X to P, Y to P , and Z to P is $(7,6,5)$ respectively.
The distance vector from R to P via XYZ is $(3+7,2+6,5+5)=(10,8,10)$
So, take minimum distance from R to P which is 8 via Y .
After the iteration distance vector from X to Q, Y to Q, Z to Q is $(4,6,8)$ respectively.
The distance vector from R to Q via XYZ is $(3+4,2+6,5+8)=(7,8,13)$
So, take minimum distance from R to Q which is 7 via X .
46. Consider the following directed graph:

Which of the following is/are correct about the graph?
(a) The graph does not have a topological order.
(b) A depth-first traversal starting at vertex S classifies three directed edges as back edges.

TV THE GATE COACH

(c) The graph does not have a strongly connected component
(d) For each pair of vertices u and v, there is a directed path from u to v.

Ans. a, b
Exp:

- As we can see there is cycle in given DAG. So, topological order is not possible.
- Statement (b) is also true.
- There is no path from A to B, so statement (c) is false.
- In SQBR, it is strongly connected component. So, statement (d) is false.

47. Which of the following regular expressions represent(s) the set of all binary numbers that are divisible by three? Assume that the string ϵ is divisible by three.
(a) $(0+1(01 * 0) * 1) *$
(b) $(0+11+10(1+00) * 01)^{*}$
(c) $\left(0 *(1(01 * 0) * 1)^{*}\right)^{*}$
(d) $(0+11+11(1+00) * 00)^{*}$

Ans. a, b, c
Exp:s
The DFA for accepting all binary strings divisible by 3 is given below:

Where A is residue 0 state, B is residue 1 state and C is residue 2 state.

From this we get by deleting (c).

We get option (a) is correct $\left(0+1(01 * 0)^{*} 1\right)^{*}$
Now option (a) = option (c)
Because $\quad\left(\mathrm{r}^{*} \mathrm{~s}^{*}\right)^{*}=(\mathrm{r}+\mathrm{s})^{*}$
So, option (c) is also correct.
Option (b) can be obtained by resolving the loop between B and C on "C" instead of on B.
Option (b) is also correct.

Also, note that whatever string option (a) can derive, option (b) also can derive.
So, option (b) is correct.
Option (d) $(0+11+11(1+00) * 00)^{*}$ cannot derive " 1001 " which is accepted by machine. So, option (d) is incorrect.

Q. 48 - Q. 55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

48. Consider a three-level page table to translate a 39 -bit virtual address to a physical address as shown below:

The page size is $4 \mathrm{~KB}\left(1 \mathrm{~KB}=2^{10}\right.$ bytes) and page table entry size at every level is 8 bytes. A process P is currently using $2 \mathrm{~GB}\left(1 \mathrm{~GB}=2^{30}\right.$ bytes) virtual memory which is mapped to 2 GB of physical memory. The minimum amount of memory required for the page table of P across all levels is KB.

Ans. 4108
Exp:
For minimum consider 1 page at each level.
Now, page table size $=2^{9} \times 8 \mathrm{~B}=4 \mathrm{~KB}$
If 1 page is present at each level, then total 3 pages will be there.
So, total page table size in the memory will be $4 \times 3=12 \mathrm{~KB}$
49. Consider the following ANSI C program.
\#include <stdio.h>
int foo(int x, int y, int q)
\{
if $((x<=0) \& \&(y<=0)$
return q;
if $(x<=0)$
return $\operatorname{foo}(\mathrm{x}, \mathrm{y}-\mathrm{q}, \mathrm{q})$;
if $(\mathrm{y}<=0)$
return foo $(\mathrm{x}-\mathrm{q}, \mathrm{y}, \mathrm{q})$;
return $\operatorname{foo}(x, y-q, q)+f o o(x-q, y, q)$;
\}
int main()
\{
int $r=$ foo $(15,15,10)$;
$\operatorname{printf}(" \% \mathrm{~d} ", \mathrm{r}):$
return 0 ;
\}
The output of the program upon execution is \qquad .

Ans. 60

Exp:

50. Let S be a set consisting of 10 elements. The number of tuples of the form (A, B) such that A and B are subsets of S, and $A \subseteq B$ is \qquad -.

Ans. 59049

Exp:
The Venn diagram for this is

Now every element x in S has only 3 options. It can be $x \in A$ or $x \in B-A$ or $x \in S-B$. So, the number of ways to choose A and B such that $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{S}$ is 3^{10}.

TVTHE GATE COACH

51. Consider the following augmented grammar with $\{\#, @,<,>, a, b, c\}$ as the set of terminals.

$$
\begin{gathered}
\mathrm{S}^{\prime} \rightarrow \mathrm{S} \\
\mathrm{~S} \rightarrow \mathrm{~S} \# \mathrm{cS} \\
\mathrm{~S} \rightarrow \mathrm{~S} S \\
\mathrm{~S} \rightarrow \mathrm{~S} @ \\
\mathrm{~S} \rightarrow<\mathrm{S}> \\
\mathrm{S} \rightarrow \mathrm{a} \\
\mathrm{~S} \rightarrow \mathrm{~b} \\
\mathrm{~S} \rightarrow \mathrm{c}
\end{gathered}
$$

Let $\mathrm{I}_{\mathrm{o}}=\operatorname{CLOSURE}\left(\left\{\mathrm{S}^{\prime} \rightarrow \cdot \mathrm{S}\right\}\right)$. The number of items in the set $\operatorname{GOTO}\left(\operatorname{GOTO}\left(\mathrm{I}_{0},<\right),<\right)$ is
\qquad .

Ans. 8

Exp:

52. Consider a Boolean function $f(w, x, y, z)$ such that

$$
\begin{gathered}
f(, 0,0, z)=1 \\
f(1, x, 1, z)=x+z
\end{gathered}
$$

$$
f(w, 1, y, z)=w z+y
$$

The number of literals in the minimal sum－of－products expression of f is \qquad ．

Ans． 6
Exp：
$\mathrm{f}(\mathrm{w}, 0 \quad 0, \mathrm{z})=1$
$\mathrm{f}(1, x, 1, \mathrm{z})=x+\mathrm{z}$
$\mathrm{f}(\mathrm{w}, 1, \mathrm{y}, \mathrm{z})=\mathrm{wz}+\mathrm{y}$

	wxyz	Eqn．1	Eqn．2	Eqn．3	f
0	0000	1			1
1	0001	1			1
2	0010				\times
3	0011				\times
4	0100			0	0
5	0101			0	0
6	0110			1	1
7	0111			1	1
8	1000	1			1
9	1001	1			1
10	1010		0		0
11	1011		1		1
12	1100			0	0
13	1101			1	1
14	1110		1	1	1
15	1111		1	1	1

$\mathrm{f}(\mathrm{w}, x, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,6,7,8,9,11,13,14,15)+\mathrm{d}(2,3)$

$\therefore \quad \mathrm{f}=\overline{x y}+x y+w z$
The number of literals in the minimal SOP expression is 6 .
53. Consider a pipelined processor with 5 stages, Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access (MEM), and Write Back (WB). Each stage of the pipeline, except the EX stage, takes one cycle. Assume that the ID stage merely decodes the instruction and the register read is performed in the EX stage. The EX stage takes one cycle for ADD instruction and two cycles for MUL instruction. Ignore pipeline register latencies.

Consider the following sequence of 8 instructions:

ADD, MUL, ADD, MUL, ADD, MUL, ADD, MUL

Assume that every MUL instruction is data-dependent on the ADD instruction just before it and every ADD instruction (except the first ADD) is data-dependent on the MUL instruction just before it. The Speedup is defined as follows:

Speedup $=\frac{\text { Execution time without operand forwarding }}{\text { Execution time with operand forwarding }}$
The Speedup achieved in executing the given instruction sequence on the pipelined processor (rounded to 2 decimal places) is \qquad _.

Ans. $1.87-1.88$
Exp:
With operand forwarding:
8 Instructions +4 MUL instruction $\times 1$ Extra Cycle in Ex-stage
$\mathrm{n}=12$ (finite)
$K=5$
$E T_{\text {Pipe }}=(K+n-1)$ Cycles
$=(5+12-1)=16$ Cycles
Without operand forwarding :

- 8 Instructions +4 MUL Instruction $\times 2$ Stalls at ID stage for ADD O/P +3 ADD Instruction $\times 3$ Stalls at ID stage for MUL O/P +1 MUL Instruction $\times 1$ Extra Cycle in Ex-Stage (Last Instruction)
$\mathrm{n}=26$
$\mathrm{K}=\mathrm{n}$
$E T_{\text {Pipe }}=(K+n-1)$ Cycles
$=(5+26-1)$ Cycles
$=30$ Cycles
$\therefore \quad \mathrm{S}=\frac{30}{16}=1.875$

54. Consider a network using the pure ALOHA medium access control protocol, where each frame is of length 1,000 bits. The channel transmission rate is $1 \mathrm{Mbps}\left(=10^{6}\right.$ bits per second). The aggregate number of transmissions across all the nodes (including new frame transmissions and retransmitted frames due to collisions) is modelled as a Poisson process with a rate of 1,000 frames per second. Throughput is defined as the average number of frames successfully transmitted per second. The throughput of the network (rounded to the nearest integer) is \qquad —.

Ans. $130-140$
Exp:
1 frame takes $=\mathrm{Tt}=\frac{L}{B \cdot W}$.
$\Rightarrow \quad \frac{1000}{10^{6}}=1 \mathrm{milli} \mathrm{sec}$

1000 frame $\mathrm{Tt}=1000 \times 1 \mathrm{millisec}=1 \mathrm{sec}$
In $1 \mathrm{sec}, 1000$ frames sends, which is 1 millisec per frame.
So, $\quad G=1$
Efficiency of pure Aloha $(\eta)=G \times e^{-2 G}$
Where, $\mathrm{G}=$ Number of requests per time slot willing to transmit
$\mathrm{e}=$ Mathematical constant approximately equal to 2.718.
So, $\quad \eta=12.718^{(-2 \times 1)}=0.1353$
Therefore, in $1 \sec 1000$ frames $=0.1353 \times 1000=135.3($ closest integer $)$

```
=> 135
# Throughput = 135
```

55. In a directed acyclic graph with a source vertex s, the quality-score of a directed path is defined to be the product of the weights of the edges on the path. Further, for a vertex v other than s , the qualityscore of v is defined to be the maximum among the quality-scores of all the paths from s to v. The quality-score of s is assumed to be 1 .

TVTHE GATE COACH

The sum of the quality-scores of all the vertices in the graph shown above is \qquad .

Ans. 929
Exp:
Modify Dijkstra's Algo to get longest path in terms of quality scores (Use Max heap)
Algo:

1. Choose vertex u which is maximum quality score value.

V is set of adjacent of u .
for (each vertex (v))
\{ \quad if $(\mathrm{q}[\mathrm{v}]<\mathrm{q}[\mathrm{u}] * \cos (\mathrm{u}, \mathrm{v})]$
\{

$$
\begin{aligned}
& \mathrm{q}[\mathrm{v}]=\mathrm{q}[\mathrm{u}] * \operatorname{cost}(\mathrm{u}, \mathrm{v}) \\
& \operatorname{prev}[\mathrm{v}]=4
\end{aligned}
$$

2. Repeat (1) for each vertex exactly once.

Quality score (q):

1	0	0	0	0	0	0	0	0
1	9	9	1	9	81	9	81	729

Initially, let $\mathrm{q}[\mathrm{v}]=0$ or $-\infty$ (take smallest possible value)
Prev. :

-1	s	a	s	a	d	c	d	e

$\mathrm{S} \Rightarrow\{\mathrm{a}, \mathrm{c}\} \quad \mathrm{q}(\mathrm{a})=9, \mathrm{q}(\mathrm{c})=1$
$\mathrm{a} \Rightarrow\{\mathrm{d}, \mathrm{b}\} \quad \mathrm{q}(\mathrm{d})=|\mathrm{ad}|^{*} \mathrm{q}(\mathrm{a})=1^{*} 9=9, \mathrm{q}(\mathrm{b})=|\mathrm{ab}|^{*} \mathrm{q}(\mathrm{a})=1^{*} 9=9$

TVTHE TATE COACH

$$
\begin{array}{ll}
b \Rightarrow\{e\} & q(e)=|b e| * q(b)=1 * 9=9 \\
d \Rightarrow\{e, g\} & q(e)=|d e| * q(d)=9 * 9=81, q(g)=|d g| * q(d)=9 * 9=81 \\
e \Rightarrow\{t\} & q(t)=|e t| * q(e)=9 * 81=729 \\
g \Rightarrow\{t\} & \quad t \text { already relaxed. } \\
c \Rightarrow\{f, d\} & q(f)=|c f| * q(c)=9 * 1=9 \\
f \Rightarrow\{g\} & \quad g \text { already relaxed. }
\end{array}
$$

